Genetic Testing in a Changing Regulatory Landscape

Genetic Alliance
September 16, 2009

Jeffrey N. Gibbs
Hyman, Phelps & McNamara, P.C.
Washington, DC
jgibbs@hpm.com
Definition of a Diagnostic

• A product intended to be used to “diagnose a disease or other condition” is regulated as a device by the Food and Drug Administration (FDA) under the Federal Food, Drug, and Cosmetic Act.

• “Diagnose” also encompasses screening, monitoring, prognosis, etc.

• “Diagnose” has been given a broad interpretation by the courts.

• Testing for genetic traits would fall within the definition of a device.
Who Regulates?

• Office of In Vitro Diagnostic Safety and Effectiveness (OIVD), part of the Center for Devices and Radiological Health (CDRH), of the FDA regulates most in vitro diagnostics (IVDs).

• The Center for Biologic Evaluation and Research (CBER) regulates tests intended for use in blood banking and transfusion.
 – CBER also regulates HIV tests.

• Jurisdiction determined by intended use.
Intended Use: A Pivotal Concept

• “Intended Use” is governed by the objective intent of the company – 21 C.F.R. § 801.4.

• Intended use can determine whether premarket approval application (PMA), 510(k) premarket notification, or no FDA review.
 – PMAs are much more complex than 510(k)s.

• Intended use can determine how much data and what type, e.g., prospective large scale study for screening study vs. small retrospective study for monitoring.
Intended Use: A Pivotal Concept (cont’d.)

- Affects reimbursement.
- Needs to match clinical data and study population.
- Controls marketing claims for IVD once cleared/approved.

To sum up: Can determine whether PMA or 510(k), what data need to be collected (time and cost), reimbursement coverage, and what claim a company can make.
In Vitro Diagnostics: Routes to the Market

• Thus far, only a handful of genetic tests have gone through the FDA process.
• Process is the same for genetic tests as any other test.
 – Premarket Approval Application (PMA)
 – 510(k) premarket notification
 – De Novo Reclassification
 – Investigational Use Only
 – Research Use Only
 – Laboratory Developed Tests
Getting FDA Feedback

• It is very important for companies to know what data to submit in an application.

• Some applications are routine, and no prior contact is necessary.
 – Well-defined, recent predicate device.
 – FDA has issued a guidance document.

• For novel products, FDA feedback can be very helpful to the company.
 – Obtained through a “pre-IDE” submission.
 – Do not have to actually submit an investigational device exemption (IDE) application to have a meeting.

• Data requirements have changed over time.
FDA Classification Scheme

- Level of regulation linked to product risk.
- Class I – low risk.
 - 510(k) generally not needed; may be exempt from Good Manufacturing Practice (GMP) regulation.
 - Example: Equine encephalomyelitis virus serological reagents.
- Class II – moderate risk.
 - Usually subject to 510(k) and Good Manufacturing Practice.
 - Example: Glucose.
 - May also need to meet special controls.
- Class III – highest risk.
 - PMA required.
 - Example: Human Papilloma Virus.
510(k) Premarket Notification

- Most common route to market with new assay.
- Need to show “substantial equivalence” to a “predicate device.”
 - Predicate devices on the market before May 28, 1976 or cleared by FDA through a 510(k).
 - PMA approved device cannot be a predicate device for a 510(k), unless reclassified to Class II or I.
510(k) Premarket Notification (cont’d.)

• Substantial equivalence.
 – Same intended use, though FDA has some latitude in applying requirement.

• Same technology, or technological differences do not raise different issues of safety or effectiveness.
 – Typically, novel technology does not preclude 510(k) clearance. This has been helpful because of all the new technologies.

• Clinical data will be required for new types of assay.
• Laboratory test data, e.g., reproducibility of results using some samples in different laboratories, will be required.
510(k) Premarket Notification (cont’d.)

- FDA can find substantially equivalent, allowing IVD to be marketed.
- Can find 510(k) Not Substantially Equivalent, i.e., reject it.
- Ask for more information.
- 90 days per review cycle.
- Delays or data requests can become very costly.
De Novo Classification

- Some low or moderate risk devices lack predicate device.
- For these products, FDA can use de novo classification process.
 - Company submits 510(k)
 - Found Not Substantially Equivalent
 - Then submit petition for de novo classification
 - FDA can then approve the device
 - FDA will issue special controls guidance document
- FDA has used de novo process fairly frequently, e.g., circulating tumor cells for breast cancer and the newly cleared ovarian cancer test.
- Subsequent products can use 510(k) process.
- A good tool for some innovative products.
Premarket Approval Application

• Requires clinical data.
• Voluminous submission.
• 180 day review cycle.
• Advisory panel for at least the first submission for that type of assay.
• Pre-approval GMP inspection.
• FDA typically monitors study sites.
• More costly than 510(k)s and generally takes longer.
• Once obtain approval, harder to make changes to product or labeling.
• In general, 510(k) route is preferred.
• For some IVDs, and particularly for smaller markets, a PMA may not be economically viable.
Investigational Use Only (IUO)

- IUO products are intended for use in clinical investigations.
- Vehicle for generating clinical data to support marketing application.
- Manufacturer can charge for IUO products within limits.
- Product must be labeled as IUO.
- Manufacturer needs to receive some data back from investigators.
Investigational Use Only (IUO) (cont’d.)

• Generally, FDA approval not needed to begin study for IVD.
 – Typically will need approval from an institutional review board for prospective studies, and possibly for retrospective.
 – May need to obtain patient informed consent, although “anonymized” banked specimens can often be used.
Research Use Only (RUO)

• RUO products are intended for use in basic research or to identify a potential clinical application.
• Cannot claim safe, effective, or has diagnostic utility.
• Manufacturer can charge for RUO products.
• No need for manufacturer to collect data.
• Exempt from GMPs.
Laboratory Developed Tests (LDTs)

• LDTs pre-date FDA regulation of devices.
• FDA first said it could regulate LDTs in 1992.
• According to FDA, all LDTs are medical devices and subject to full device regulation.
• FDA did not seek to exercise power until a few years ago.
• Exercising it more frequently, e.g., 2008 Warning Letter to LabCorp regarding OvaSure saying its test was not truly an LDT.
 – Letters to laboratories regarding direct access testing for patients.
 – Letters regarding H1N1 testing
 – Asserting jurisdiction more frequently over individual tests.
• Issue: How much work does a lab need to do for a test to qualify as LDT.
Laboratory Developed Tests (LDTs) (cont’d.)

• Historically, laboratories did not need to consider FDA regulation – those days are over.
 – Affects ability of IVD companies to use LDTs as initial avenue for entering market.
 – Has had an impact on access to funding.
• Vast majority of genetic tests are LDTs.
• Overwhelming majority of laboratory tests still not being regulated by FDA.
 – Could change with new legislation.
 – Genentech’s December 5, 2008 citizen petition asked FDA to actively regulate LDTs “intended for use in drug or biologic therapeutic decision making.”
• Area in a state of flux.
In Vitro Diagnostic Multivariate Index Assays (IVDMIAs)

- FDA draft guidance proposes regulating IVDMIAs as devices, which require clearance or approval.
- IVDMIAs take multiple measurements and provide a score.
- Considerable opposition to concept, e.g., based on technology, not risk; ambiguous terms.
- Current status?
Conclusion

• IVDs represent a large and growing industry.
• Complex, evolving regulatory environment.
• Regulatory uncertainty exists, and predictability is elusive.