The Next Phase of Newborn Screening: Whole Genome Sequencing?

Prof. B.M. Knoppers
Director, Centre of Genomics and Policy
McGill University

Genetic Alliance, Washington
August 20th, 2013
Outline

• Introduction

• Views on newborn screening using genome sequencing

• ELSI issues

• Policy developments and needs
Introduction

• WGS already used in different fields, including in the newborn population

 - Clinic ➔ Rapid WGS for Genetic Disease Diagnostic in Neonatal Intensive Care Units (2012)

 - Research ➔ e.g. BabySeq™- Exploring Genome Sequencing of Newborns / Brigham and Women’s Hospital (BWH)
WGS in Newborn Screening Program?

• Though controversial, many believe that once WGS is sufficiently robust and affordable, all newborns will have their genomes sequenced at birth (PHG Foundation, Next Steps in the Sequences, (2011) at 56)

• Francis Collins states that: “[...] as we learn more about effective interventions for genetic risk factors, and recognize that interventions early in life provide significant advantages, it will become more and more compelling to determine this information at birth”

Parents’ interest in whole-genome sequencing of newborns

Aaron J. Goldenberg, PhD, MPH¹, Daniel S. Dodson, MS², Matthew M. Davis, MD, MAPP²-⁴
and Beth A. Tarini, MD, MS²

Purpose: The aim of this study was to assess parents’ interest in whole-genome sequencing for newborns.

Methods: We conducted a survey of a nationally representative sample of 1,539 parents about their interest in whole-genome sequencing of newborns. Participants were randomly presented with one of two scenarios that differed in the venue of testing: one offered whole-genome sequencing through a state newborn screening program, whereas the other offered whole-genome sequencing in a pediatrician’s office.

Results: Overall interest in having future newborns undergo whole-genome sequencing was generally high among parents. If whole-genome sequencing were offered through a state’s newborn-screening program, 74% of parents were either definitely or somewhat interested in utilizing this technology. If offered in a pediatrician’s office, 70% of parents were either definitely or somewhat interested. Parents in both groups most frequently identified test accuracy and the ability to prevent a child from developing a disease as “very important” in making a decision to have a newborn’s whole genome sequenced.

Conclusion: These data may help health departments and children’s health-care providers anticipate parents’ level of interest in genomic screening for newborns. As whole-genome sequencing is integrated into clinical and public health services, these findings may inform the development of educational strategies and outreach messages for parents.

Genet Med advance online publication 6 June 2013

Key Words: newborn screening; parents; whole-genome sequencing
Public Views on Participating in NBS Using Genome Sequencing

Y. Bombard et al., 2013 (submitted):

- "Our results suggest that integrating WG/ES into NBS in an untargeted fashion might reduce public participation in NBS as well as the moral authority that NBS programs rely upon to ensure population benefits"

- Public is committed to participating in NBS programs that identify known and treatable disorders

- Public willingness was reduced for untargeted WG/ES compared to traditional targeted NBS technologies
Overview of the issues

Growing Up in the Genomic Era: Implications of Whole-Genome Sequencing for Children, Families, and Pediatric Practice

Christopher H. Wade,1 Beth A. Tarini,2 and Benjamin S. Wilfond3,4

1Nursing and Health Studies Program, University of Washington Bothell, Bothell, Washington 98011; email: cwade@uw.edu
2Child Health Evaluation and Research Unit, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan 48109; email: btarini@umich.edu
3Truman Katz Center for Pediatric Bioethics, Seattle Children's Research Institute, Seattle, Washington 98101; email: benjamin.wilfond@seattlechildrens.org
4Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington 98101

Ethical Issues with Newborn Screening in the Genomics Era

Beth A. Tarini1 and Aaron J. Goldenberg2

1Child Health Evaluation and Research (CHEAR) Unit, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48109; email: btarini@umich.edu
2Department of Bioethics and Center for Genetic Research Ethics and Law, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106; email: aaron.goldenberg@case.edu
Overview of the issues

<table>
<thead>
<tr>
<th>Type</th>
<th>Example of pediatric health use</th>
<th>Example(s) of challenges when detected by P-WGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-gene and preventable childhood-onset condition</td>
<td>Testing for sickle cell disease, a part of standard newborn screening, helps prevent a range of negative childhood symptoms</td>
<td>A large number of false positives need to be resolved</td>
</tr>
<tr>
<td>Single-gene and nonpreventable childhood-onset condition</td>
<td>Early identification of Tay-Sachs disease, a fatal condition, could decrease time seeking a diagnosis</td>
<td>Unanticipated findings of a severe nonpreventable condition could have a particularly negative impact on parental well-being</td>
</tr>
<tr>
<td>Multi-gene and preventable childhood susceptibility</td>
<td>Findings of increased asthma risk could lead to earlier detection and prevention efforts</td>
<td>Evidence of clinical validity and recommendations for prevention are not established; a large number of people need to be treated per case prevented</td>
</tr>
<tr>
<td>Single-gene and preventable adult-onset condition</td>
<td>Beta blockers can be prescribed to children with Marfan syndrome to prevent cardiovascular events</td>
<td>Prevention recommendations need to be developed and adherence effectively supported</td>
</tr>
<tr>
<td>Single-gene and nonpreventable adult-onset condition</td>
<td>Huntington’s disease testing could relieve uncertainty for children with a high-risk family history and could benefit those who test negative</td>
<td>Concerns about harms to children and unclear benefit mean that high-quality information and opportunities to decline would need to be provided</td>
</tr>
<tr>
<td>Multi-gene and preventable adult susceptibility</td>
<td>Knowledge of increased cardiovascular disease risk could lead to public health interventions, encouraging preventive health behaviors</td>
<td>There is only limited evidence of clinical validity and utility; a large number of people need to be treated per case prevented</td>
</tr>
<tr>
<td>Pharmacogenomic information</td>
<td>TPMT gene function can inform acute lymphoblastic leukemia treatment for children</td>
<td>Clear, evidence-based treatment recommendations need to be developed; WGS results need to made rapidly available to prescribing clinicians</td>
</tr>
<tr>
<td>Carrier status</td>
<td>Knowledge of cystic fibrosis carrier status could help prepare teens for future reproductive choices</td>
<td>Health benefits are unclear; reproductive risk may be confused with personal health risk</td>
</tr>
</tbody>
</table>
WGS in NBS?

"Nonetheless, it is generally recognized that there should be a high burden of proof demonstrating the clinical utility of a population-based test, and the nonexistence of evidence supporting population-based P-WGS suggests that extensive research will need to be conducted prior to implementation"

"Population-based P-WGS is unlikely to be warranted in the near future given the need for research to resolve a host of ethical and practical considerations"

Overview of the issues

- Which information to report?
- Impact on the healthcare system
- Health professionals and parents
- Communication of results
- Treatment and follow-up
- Storage
Learning from established population-based screening programs?

E.g. of population-based screening programs:

- Antenatal screening
- Neonatal screening (storage and secondary use of DBS)
- Cancer screening (e.g. breast cancer / colon cancer)
- Carrier status screening in some at-risk populations

Some lessons?

- Involvement (e.g. parents/community) in the decision-making process
- Education
- Respect for autonomy
- Policy / guidance needs:
 - evidence, and
 - flexibility
Conclusion

• Public health systems ("values")
• Surveillance / stratification / targeting
• Duty to follow?
• Family unit / rights
• Physician liability
• Right not to know